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Jacob Lewis Bourjaily

Dimensional Regularization

a) We are to evaluate the expression
∫

dd`E

(2π)d

1
(`2E + ∆)n

, for n ≥ 2.

In homework 2, problem 3 we showed that the d-dimensional volume element Ωd = 2πd/2

Γ(d/2) .
Using this, we see that

∫
dd`E

(2π)d

1
(`2E + ∆)n

=
∫

dΩd

(2π)d

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
2πd/2

(2π)dΓ(d/2)

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
2

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d`E
`d−1
E

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2−1

(`2E + ∆)n
.

We will defined the integration variable

η ≡ ∆
(`2E + ∆)

such that dη = − ∆
(`2E + ∆)2

d(`2E) and `2E = ∆η−1(1− η).

Note that under the η substitution, the limits of integration will change from (0,∞) 7→ (1, 0) ∼
−(0, 1). Also note the use of the definition of the Euler Beta function below. Making this
substitution in the required integral, we have

∫
dd`E

(2π)d

1
(`2E + ∆)n

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2−1

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

1
∆

∫ 1

0

dη
∆d/2−1η1−d/2(1− η)d/2−1

(`2E + ∆)n−2
,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)2−d/2 ∫ 1

0

dη

(
∆
η

)2−n

η1−d/2(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)2−d/2+n−2 ∫ 1

0

dηηn−2+1−d/2(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2 ∫ 1

0

dηηn−d/2−1(1− η)d/2−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2 Γ(n− d/2) · Γ(d/2)
Γ(n)

,

∴
∫

dd`E

(2π)d

1
(`2E + ∆)n

=
1

(4π)d/2

Γ(n− d/2)
Γ(n)

(
1
∆

)n−d/2

. (a.1)

‘óπερ ’έδει δε�ιξαι
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b) Let us now evaluate the expression
∫

dd`E

(2π)d

`2E
(`2E + ∆)n

, for n ≥ 2.

The evaluation of this integral will proceed identically to that in part (a) above. We will
introduce the same integration variable η ≡ ∆

(`2E+∆)
and follow the same procedure. We see that

∫
dd`E

(2π)d

`2E
(`2E + ∆)n

=
∫

dΩd

(2π)d

∫ ∞

0

d`E
`d+1
E

(`2E + ∆)n
,

=
2πd/2

(2π)dΓ(d/2)

∫ ∞

0

d`E
`d+1
E

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

∫ ∞

0

d(`2E)
(`2E)d/2

(`2E + ∆)n
,

=
1

(4π)d/2

1
Γ(d/2)

1
∆

∫ 1

0

dη
∆d/2η−d/2(1− η)d/2

(`2E + ∆)n−2
,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)1−d/2 ∫ 1

0

dη

(
∆
η

)2−n

η−d/2(1− η)d/2,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)1−d/2+n−2 ∫ 1

0

dηηn−1−d/2−1(1− η)d/2+1−1,

=
1

(4π)d/2

1
Γ(d/2)

(
1
∆

)n−d/2−1 Γ(n− 1− d/2) · Γ(d/2 + 1)
Γ(n)

.

Recall the elementary property of the Γ function that αΓ(α) = Γ(α + 1). Therefore we see that
Γ(d/2 + 1) = d

2Γ(d/2). Using this result, we see immediately that

∴
∫

dd`E

(2π)d

`2E
(`2E + ∆)n

=
1

(4π)d/2

d

2
Γ

(
n− d

2 − 1
)

Γ(n)

(
1
∆

)n−d/2−1

. (b.1)

‘óπερ ’έδει δε�ιξαι

c i) Let us show the following identity,

γµγνγµ = −(2− ε)γν .

Simply applying the anticommutation relation of the γ matrices, we see that1

γµγνγµ = gµργ
µγνγρ = 2gµρg

νργµ − gµργ
µγργν = 2δν

µγµ − dγν = (2− d)γν ,

∴ γµγνγµ = −(2− ε)γν . (c.1)

‘óπερ ’έδει δε�ιξαι

c ii) Let us show the following identity,

γµγνγργµ = 4gνρ − εγνγρ.

Simply applying the anticommutation relation of the γ matrices, we see that

γµγνγργµ = gµσγµγνγργσ = 2gµσgρσγµγν − 2gµσgµρ + gµσγµγσγνγρ,

= 2δρ
µγµγν − 2δσ

µγµγρ + dγνγρ = 2γργν + 2γνγρ − 4γνγρ + dγνγρ,

∴ γµγνγργµ = 4gνρ − εγνγρ. (c.2)

‘óπερ ’έδει δε�ιξαι

1We will repeatedly use that gµργµγρX = gµργργµX by symmetry of the inner product together with gµργµγρX =
2gµρgµρX − gµργργµX from the anticommutation relations, imply that gµργµγρX = gµρgµρX = dX for any product

of γ matrices X .
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c iii) Let us show the following identity,

γµγνγργσγµ = −2γσγργν + εγνγργσ.

Simply applying the anticommutation relation of the γ matrices, we see that

γµγνγργσγµ = gµτγµγνγργσγτ = gµτ (2gστγµγνγρ − 2gρτγµγνγσ + 2gντγµγργσ − gµτγνγργσ) ,

= 2δσ
µγµγνγρ − 2δρ

µγµγνγσ + 2δν
µγµγργσ − dγνγργσ = 2γσγνγρ − 4gνργσ + (4− d)γνγργσ,

= 4gµργσ − 2γσγργν − 4gνργσ + εγνγργσ,

∴ γµγνγργσγµ = −2γσγργν + εγνγργσ. (c.3)
‘óπερ ’έδει δε�ιξαι

The Ward Identity

a i) Let us compute the integral ∫
d4`

(2π)4
1

(`2 −∆)2
,

by restricting the integration region to the Euclidean sphere with `E < Λ. To accomplish this
calculation, we will recall several important results from earlier homework problems. Namely,
we will use the standard 4-dimensional volume element and change to Euclidean coordinates `E .
Notice the u substitution below.∫

d4`

(2π)4
1

(`2 −∆)2
=

∫
dΩ4

(2π)4

∫ ∞

0

d`
`3

(`2 −∆)2
,

=
2i

(4π)2

∫ ∞

0

d`E
`3E

(`2E + ∆)2
,

→ 2i

(4π)2
lim

Λ→∞

∫ Λ

0

d`E
`3E

(`2E + ∆)2
,

=
i

(4π)2
lim

Λ→∞

∫ Λ2+∆

∆

du
u−∆

u2
,

=
i

(4π)2
lim

Λ→∞

[
log(u)

∣∣∣∣
Λ2+∆

∆

+
∆
u

∣∣∣∣
Λ2+∆

∆

]
,

=
i

(4π)2
lim

Λ→∞

[
log

(
Λ2 + ∆

∆

)
− 1

]
,

=
i

(4π)2

[
log

(
Λ2

∆

)
− 1 + O

(
∆
Λ2

)]
.

ii) We are to compute the function Z1 from the δΓ(q = 0) calculation. Recall that in homework 5
question 4, we computed δF1(q = 0) using a different regularization. Because δZ1 = −δF1(q = 0)
much of our ‘hard labor’ has already been completed. Let us begin our calculation.

δZ1 = −4ie2

∫ 1

0

dz(1− z)
∫

d4`

(2π)4

[
−1

2
`2

(`2 −∆)3
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −4ie2

∫ 1

0

dz(1− z)
∫

d4`

(2π)4

[
−1

2

(
1

(`2 −∆)3
+

∆
(`2 −∆)3

)
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −4ie2

∫ 1

0

dz(1− z)
[
−1

2
i

(4π)2

(
log

(
Λ2

∆

)
− 1 + O

(
∆
Λ2

))
+

1
4

i

(4π)2
− 1

2
i

(2π)2
m2(1− 4z + z2)

∆

]
,

= − α

4π

∫ 1

0

dz(1− z)
[
log

(
Λ2

∆

)
− 1− 1

2
+

m2(1− 4z + z2)
∆

]
,

∴ δZ1 = − α

4π

∫ 1

0

log
(

Λ2

∆

)
− 3

2
+

m2(1− 4z + z2)
∆

.

‘óπερ ’έδει δε�ιξαι
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iii) Let us now compute the value of the electron self-energy function Zd. First, we must recall the
definition of Z2. It is the function

δZ2 =
dΣ2

d 6p

∣∣∣∣
6p=m

where

Σ2 = −ie2

∫ 1

0

dz

∫
d4`

(2π)4
−2z 6p + 4m

(`2 −∆)2
=

α

2π

∫ 1

0

dz(2m− z 6p)
[
log

(
Λ2

∆

)
− 1

]
.

Using the chain rule for differentiation, we see that

∴ δZ2 =
α

2π

∫ 1

0

dz

[
−z

(
log

(
Λ2

∆

)
− 1

)
+

2m2z(2− z)(1− z)
∆

]
.

iv) We will now compute the difference Z2−Z1 = δZ2− δZ1 for this regularization scheme. We will
call upon Peskin and Schroeder for algebraic simplification within the integrand. The cancella-
tion of the log-type term with the 1/∆ term was shown in homework 5. We have

δZ2 − δZ1 =
α

2π

∫ 1

0

dz

[
(1− 2z) log

(
Λ2

∆

)
+ z − 3

2
(1− z) +

2m2z(2− z)(1− z)
∆

− m2(1− 4z + z2)
∆

]
,

=
α

2π

∫ 1

0

dz

[
z − 3

2
(1− z)

]
=

α

2π

(
−1

4

)
,

∴ δZ2 − δZ1 = − α

8π
.

b i) Let us repeat our above calculation using dimensional regularization. We can begin our work
by generalizing the Dirac algebra used to calculate δZ1. Notice that this calculation will require
our d = 4− ε dimensional generalization of the Dirac algebra to simplify the numerator in

δΓµ(q2 = 0) = 2ie2

∫ 1

0

dz(1− z)
∫

dd`

(2π)d

γν (6` + z 6p) γµ (6` + z 6p) γν

(`2 −∆)3
.

Although we have already simplified our work by leaving off terms proportional to q, we may
reduce our labor even more. The regularization of this integral in d-dimensions is presented to
make sense of the divergence of the integral. Computing the integral in d = 4 − ε dimensions,
we avoid the divergence of the integral due to the term proportional to `2 in the numerator.
However, we should notice that no other terms in the integral will have a power of ` ≤ 4 in the
denominator and therefore will not diverge.

Therefore, only the `2-term will need to be regulated and the other parts of this integral can
be computed as usual.2

Let us then compute the regulated coefficient of the `2 term in the the numerator. To do
this, we will use our algebraic results from problem (1.c.iii) above. We also remind the reader
that in d-dimensions the integral is symmetric under `µ`ν → 1

dγµν`2. Therefore we see that our
regulated term is simply

γν 6`γµ 6`γν = `ρ`σγνγργµγσγν ,

= `ρ`σ (−2γσγµγρ + εγργµγσ) ,

= −4 6``µ + 2 6`2γµ + 2ε 6``µ − ε 6`2γµ,

= −4
d
`2γµ + 2`2γµ +

2ε

d
`2γµ − ε`2γµ,

= γµ`2
(−4 + 2ε

d
+ 2− ε

)
,

= γµ`2
(ε− 2)2

d
.

2It makes little sense to regulate a convergent integral. More rigorously, one could carry ε dependence on all terms and
then ‘observe’ that for all but the term proportional to `2 in the numerator, ε → 0 will not affect the integral. Therefore
we may view the introduction of ε into those terms as a waste of time.
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Now that we have fully established the need only to regularize this piece of the integral, let
us calculate the regularized form of δZ1. During the computation below, we have referred to the
canonical results for expansions of ∆, Γ, 1

(4π) in terms of ε. Many of these relations were derived
in homework sets 2 and 5. Let us proceed directly.

δZ1 = −2ie2

∫ 1

0

dz(1− z)
∫

dd`

(2π)d

[
(ε− 2)2

d

`2

(`2 −∆)3
+

m2(1− 4z + z2)
(`2 −∆)3

]
,

= −2ie2

∫ 1

0

dz(1− z)

[
(ε− 2)2

d

d

4
i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2
− i

2
1

(4π)2
m2(1− 4z + z2)

∆

]
,

=
α

2π

∫ 1

0

dz(1− z)
[
(ε− 2)2

4

(
2
ε
− log ∆− γE + log(4π)

)
− 1

2
m2(1− 4z + z2)

∆

]

∴ δZ1 =
α

2π

∫ 1

0

dz(1− z)
[
−

(
2
ε
− 2− log ∆− γE + log(4π)

)
− 1

2
m2(1− 4z + z2)

∆

]
.

ii) Let us now regularize the term Z2. This computation will be very similar to that above. We
will first need to rework some minor Dirac algebra. Unlike last time, however, the entire integral
will diverge and so we will need to keep ε terms consistently in our equations. Recall that Z2 is
related to a derivative of the integral

Σ2(p) = −ie2

∫ 1

0

dz

∫
dd`

(2π)d

γµ (6` + z 6p + m) γµ

(`2 −∆)2
.

Recalling that terms proportional to ` in the integral will integrate to zero because of Lorentz
covariance, we may drop the ` term. Furthermore, using only the relatively trivial Dirac algebra
identities derived above, we see that

γµ (6` + z 6p + m) γµ → −z(2− ε) 6p + dm.

Therefore we may compute this integral directly.

Σ2(p) = −ie2

∫ 1

0

dz

∫
dd`

(2π)d
(−(2− ε)z 6p + (4− ε)m)

1
(`2 −∆)2

,

= −ie2

∫ 1

0

dz

[
(−(2− ε)z 6p + (4− ε)m)

i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

]
,

=
α

2π

∫ 1

0

dz

[
1
2

((4− ε)m− (2− ε)z 6p)
(

2
ε
− log ∆− γE + log(4π)

)]
.

Therefore we see by simple chain-rule differentiation that

δZ2 =
dΣ2

d 6p

∣∣∣∣
6p=m

=
α

2π

∫ 1

0

dz
1
2

[
(ε− 2)z

(
2
ε
− log ∆− γE + log(4π)

)
− m22z(1− z) ((ε− 2)z + (4− ε))

∆

]
,

=
α

2π

∫ 1

0

dz

[
z

(
1− 2

ε
+ log ∆ + γE − log(4π)

)
− m22z(1− z) (2− z)

∆

]
,

iii) Unfortunately, I was unable to derive the explicit cancellation. It appears as if I may have
introduced an incorrect minus sign somewhere. In the correct form, one should see the total
integral vanish so that

δZ2 − δZ1 = 0.


