Paysics 523, QUANTUM FIELD THEORY II
Homework 6
Due Wednesday, 18" February 2004

JAcoB LEwIS BOURJAILY

Dimensional Regularization

a) We are to evaluate the expression
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In homework 2, problem 3 we showed that the d-dimensional volume element ; = -

Using this, we see that
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We will defined the integration variable

d(f%) and (%4 =An~'(1-n).
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Note that under the 7 substitution, the limits of integration will change from (0, 00) — (1,0) ~
—(0,1). Also note the use of the definition of the Euler Beta function below. Making this
substitution in the required integral, we have
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b) Let us now evaluate the expression
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The evaluation of this integral will proceed identically to that in part (a) above. We will
introduce the same integration variable n = (GE) and follow the same procedure. We see that
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Recall the elementary property of the I function that al'(or) = I'(aw+ 1). Therefore we see that
I'(d/2+ 1) = 4T'(d/2). Using this result, we see immediately that
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c i) Let us show the following identity,
VY Y = —(2—€)y”
Simply applying the anticommutation relation of the v matrices, we see that!

ez

YV Y = G VY = 290097V = Gup APy = 20091 — dy” = (2 = d)y”,

(c.1)
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S = =2 -y

c ii) Let us show the following identity,
YA APy = 49" — ey yP.
Simply applying the anticommutation relation of the v matrices, we see that

AV

Y'YV = Gua V'V VY = 29009V Y — 20109 + GuoV V7YV
= 207719 = 200919" + dy" P = 29P9Y + 29797 — Ay + dyP,

HaV

YA = 49" — ey (c.2)
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Lwe will repeatedly use that g, v*v* 2 = gupv"y*Z by symmetry of the inner product together with g, ,v*v* 2 =
29upg"P X — gupyPyH* £ from the anticommutation relations, imply that g.,v*v*Z = gupg"? Z = dZ for any product
of v matrices 2.
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c iii) Let us show the following identity,
YA AN = =297 + ey P
Simply applying the anticommutation relation of the « matrices, we see that
VY YV Ve = Gur VYAV = Gur (297TVYAP = 29T AT + 297 T AP — gHT AP T)
= 20,1 y" P = 20041y YT A 20,07 — Ay P = 29790y = 4gP Py 4 (4 — d)y P,
=4g""7 = 2979P9" — 49”77 + ey"v"7,

] YA Py, = =297 9Py 4 ey P (c.3)
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The Ward Identity

a i) Let us compute the integral

[
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by restricting the integration region to the Euclidean sphere with /g < A. To accomplish this
calculation, we will recall several important results from earlier homework problems. Namely,
we will use the standard 4-dimensional volume element and change to Euclidean coordinates ¢f.
Notice the u substitution below.

/d4€ 1 _/dQ4 /oodg &
2m)d (02 — A2 J(2m)4 2 — A2’
0
2% [ @,
- <47r>2/ e war
1m /dﬂE €2 +A

A+A
= lim
47T2A /

7

A2+A
* A

—~

ii) We are to compute the function Z; from the 6I'(¢ = 0) calculation. Recall that in homework 5
question 4, we computed § F (¢ = 0) using a different regularization. Because §7; = —§F;(¢ = 0)
much of our ‘hard labor’ has already been completed. Let us begin our calculation.
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iii) Let us now compute the value of the electron self-energy function Z;. First, we must recall the
definition of Z5. It is the function
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Using the chain rule for differentiation, we see that
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iv) We will now compute the difference Z5 — 71 = §Z5 — 6 Z; for this regularization scheme. We will
call upon Peskin and Schroeder for algebraic simplification within the integrand. The cancella-
tion of the log-type term with the 1/A term was shown in homework 5. We have
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b i) Let us repeat our above calculation using dimensional regularization. We can begin our work
by generalizing the Dirac algebra used to calculate §Z;. Notice that this calculation will require
our d = 4 — e dimensional generalization of the Dirac algebra to simplify the numerator in
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Although we have already simplified our work by leaving off terms proportional to ¢, we may
reduce our labor even more. The regularization of this integral in d-dimensions is presented to
make sense of the divergence of the integral. Computing the integral in d = 4 — € dimensions,
we avoid the divergence of the integral due to the term proportional to ¢? in the numerator.
However, we should notice that no other terms in the integral will have a power of £ < 4 in the
denominator and therefore will not diverge.

Therefore, only the £2-term will need to be regulated and the other parts of this integral can
be computed as usual.?

Let us then compute the regulated coefficient of the £2 term in the the numerator. To do
this, we will use our algebraic results from problem (1.c.iii) above. We also remind the reader
that in d-dimensions the integral is symmetric under ¢#¢¥ — é’y‘“’EQ. Therefore we see that our
regulated term is simply
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2Tt makes little sense to regulate a convergent integral. More rigorously, one could carry € dependence on all terms and
then ‘observe’ that for all but the term proportional to £2 in the numerator, ¢ — 0 will not affect the integral. Therefore
we may view the introduction of € into those terms as a waste of time.
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Now that we have fully established the need only to regularize this piece of the integral, let
us calculate the regularized form of §7;. During the computation below, we have referred to the
canonical results for expansions of A, T, @n 4 ) in terms of e. Many of these relations were derived
in homework sets 2 and 5. Let us proceed directly.
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ii) Let us now regularize the term Z. This computation will be very similar to that above. We
will first need to rework some minor Dirac algebra. Unlike last time, however, the entire integral
will diverge and so we will need to keep ¢ terms consistently in our equations. Recall that Z5 is
related to a derivative of the integral
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Recalling that terms proportional to £ in the mtegral will integrate to zero because of Lorentz

covariance, we may drop the ¢ term. Furthermore, using only the relatively trivial Dirac algebra
identities derived above, we see that
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Therefore we may compute this integral directly.
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Therefore we see by blmple chain-rule differentiation that
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iii) Unfortunately, I was unable to derive the explicit cancellation. It appears as if I may have
introduced an incorrect minus sign somewhere. In the correct form, one should see the total
integral vanish so that

079 — 6721 =0.



